Cambridge International AS \& A Level

CANDIDATE NAME NUMBER \square CANDIDATE NUMBER \square

CHEMISTRY

Paper 3 Advanced Practical Skills 1

You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the
question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Magnesium is a reactive metal which corrodes when left in air. Magnesium reacts with acid to release hydrogen.

You will determine the percentage purity of a sample of magnesium by reacting it with excess hydrochloric acid and measuring the volume of hydrogen formed.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

FA 1 is hydrochloric acid, HCl .
FA 2 is magnesium, Mg .

(a) Method

- Weigh the container with FA 2. Record the mass.
- Fill the tub with water to a depth of approximately 5 cm .
- Fill the $250 \mathrm{~cm}^{3}$ measuring cylinder completely with water. Holding a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is in the water just above the base of the tub.
- Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $50.0 \mathrm{~cm}^{3}$ of FA 1 into the flask labelled \mathbf{X}. Check that the bung fits tightly into the neck of flask \mathbf{X}, clamp flask \mathbf{X} and place the end of the delivery tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder.
- Remove the bung from the neck of the flask. Add all the FA 2 to the acid and replace the bung immediately. Remove the flask from the clamp and swirl it to mix the contents.
- Replace the flask in the clamp. Leave for several minutes, swirling the flask occasionally.
- Weigh the empty container. Record the mass.
- Calculate and record the mass of FA 2 that is added to the acid.

Start Question 2 or Question 3 while the gas is being collected.

- When the reaction stops producing gas, record the final volume of gas collected.

(b) Calculations

(i) Calculate the amount, in mol, of hydrogen collected in the measuring cylinder at room conditions.

$$
\begin{equation*}
\text { amount of } \mathrm{H}_{2}= \tag{1}
\end{equation*}
$$

(ii) Use your answer to (b)(i) to deduce the amount, in mol, of magnesium that reacted in your experiment.

$$
\text { amount of } \mathrm{Mg}=\text {. mol }
$$

Hence calculate the percentage purity of the magnesium.

$$
\text { purity of } \mathrm{Mg}=\text {... \% }
$$

(c) A student carries out this practical procedure but uses magnesium powder rather than magnesium ribbon. State the effect this would have on the percentage purity the student calculates. Explain your answer.
\qquad
\qquad
\qquad
(d) Another student investigates the reaction of a metal carbonate with hydrochloric acid by measuring the change in mass during the reaction. The reaction is carried out in a beaker on the pan of a balance.
(i) Explain why the mass displayed on the balance decreases during the reaction.
\qquad
\qquad
(ii) Explain why using a balance to monitor the reaction between magnesium and hydrochloric acid is not accurate.
\qquad
\qquad
\qquad
(iii) Give the ionic equation for a solid carbonate, $\mathrm{CO}_{3}{ }^{2-}(\mathrm{s})$, reacting with hydrochloric acid. Include state symbols.
\qquad

2 In Question 1 you determined the percentage purity of a sample of magnesium by measuring the volume of the gas produced when it reacts with an acid. In Question 2 you will use the enthalpy change of the reaction between magnesium and hydrochloric acid to find the percentage purity. This reaction is exothermic.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

FA 3 is hydrochloric acid, HCl . This is used in excess.
FA 4 is magnesium, Mg . You should assume it has a mass of 0.40 g .

(a) Method

- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Rinse the $50 \mathrm{~cm}^{3}$ measuring cylinder with a little FA 3 .
- Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $25.0 \mathrm{~cm}^{3}$ of FA 3 into the cup.
- Place the thermometer in the acid and tilt the cup, if necessary, so that the bulb of the thermometer is fully covered. Measure and record the temperature at time 0 minutes in Table 2.1.
- Start timing and do not stop the clock until the whole experiment has been completed at time 7 minutes.
- Record the temperature of FA 3 in the cup every $\frac{1}{2}$ minute for $1 \frac{1}{2}$ minutes.
- At time 2 minutes place FA 4 into the acid and stir the mixture.
- Record the temperature every $\frac{1}{2}$ minute. Stir the mixture between thermometer readings.

Results

Table 2.1

time/minutes	0	$\frac{1}{2}$	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$
temperature $/{ }^{\circ} \mathrm{C}$					\mathbf{X}			

time $/$ minutes	4	$4 \frac{1}{2}$	5	$5 \frac{1}{2}$	6	$6 \frac{1}{2}$	7
temperature $/{ }^{\circ} \mathrm{C}$							

I	
II	
III	

(b) (i) Plot a graph of temperature (on the y-axis) against time (on the x-axis) on the grid. The scale for the y-axis should extend $15^{\circ} \mathrm{C}$ above the maximum temperature you recorded.

Label any points you consider to be anomalous.

(ii) Draw two lines of best fit on your graph. The first is for the temperature before adding FA 4 and the second is for the cooling of the mixture. Extrapolate both lines to 2 minutes and determine the theoretical temperature rise at this time.
theoretical temperature rise at 2 minutes $=$
${ }^{\circ} \mathrm{C}$ [2]

(c) Calculations

(i) Use your answer to (b)(ii) to calculate the energy change when FA 4 is added to FA 3.

> energy change =
(ii) Use your answer to (c)(i) to calculate the enthalpy change, ΔH, in kJmol^{-1}, when 1 mol of magnesium reacts with hydrochloric acid, FA 3.

Show your working.

(iii) Use your answer to (c)(ii) and the fact that the literature value of the enthalpy change of this reaction is $-452 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (of Mg) to calculate the percentage purity of your sample of magnesium.
[Total: 12]

Qualitative analysis

For each test you should record all your observations in the spaces provided.
Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.
Where no change is observed you should write 'no change'.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.
3 (a) Devise and carry out tests to determine whether FA 5 is magnesium carbonate. Record your tests, observations and conclusions in the space below.
(b) (i) FA 6 is an aqueous solution containing two anions and two cations. Three of these ions are included in the Qualitative analysis notes.

Carry out the following tests using a 1 cm depth of FA 6 in a test-tube for each test.
Record your observations for each test in Table 3.1.
Table 3.1

| test | |
| :--- | :--- | :--- |
| Test 1
 Add aqueous sodium hydroxide. | |
| Test 2
 Add an equal depth of hydrogen
 peroxide, then divide the solution into
 two portions. | |
| To the first portion, add a few drops of
 starch solution. | |
| To the second portion, add aqueous
 sodium hydroxide. | |
| Test 3
 Add a few drops of aqueous silver
 nitrate,
 then | |
| add aqueous ammonia. | |

(ii) Identify as many ions present in FA 6 as possible from your observations in (b)(i).

Write the formulae of these ions in Table 3.2. If an ion cannot be positively identified from the tests, write 'unknown' in the space.

Table 3.2

cations	anions

(c) Acidified potassium manganate(VII) acts as an oxidising agent.
(i) State the colour change that occurs when acidified potassium manganate(VII) oxidises aqueous sodium nitrite.
colour change from
to
(ii) The change in oxidation number is equal to the number of electrons added to or subtracted from a reactant. An equation which includes electrons is called a half-equation.

The incomplete half-equation for acidified potassium manganate(VII) acting as an oxidising agent is shown.

Balance the half-equation for acidified potassium manganate(VII).

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+\ldots \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\ldots \ldots \ldots . . \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \tag{1}
\end{equation*}
$$

[Total: 16]

Qualitative analysis notes

1 Reactions of cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on warming	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is observed unless $\left[\mathrm{Ba}{ }^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. unless $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}{ }^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream/off-white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives pale yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; decolourises acidified aqueous KMnO_{4}
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids); gives white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO_{4}
thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	gives off-white/ pale yellow ppt. slowly with H^{+}

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I_{2}	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	$F=9.65 \times 10^{4} \mathrm{Cmol}^{-1}$
Avogadro constant	$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
electronic charge	$e=-1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\mathrm{m}}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at s.t.p. $(101 \mathrm{kPa}$ and 273 K$)$ $V_{\mathrm{m}}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room conditions
ionic product of water	$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\right.$ at $\left.298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)\right)$
specific heat capacity of water	$c=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\left(4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right)$

The Periodic Table of Elements

	$\stackrel{\infty}{\square}$				®立敦呙			
	$\stackrel{\rightharpoonup}{*}$						®せ害	
	$\stackrel{\square}{\bullet}$			－の颜				
	$\stackrel{\leftarrow}{\square}$		$\sim \geq$ 㫎					
	$\stackrel{ \pm}{\square}$		－ 0 ¢ ${ }_{\text {¢ }}^{\text {¢ }}$	さら蔀馬	～O～	－¢ ¢ ¢		き山镖
	$\stackrel{\sim}{\square}$			－て	的 0			
$\begin{gathered} 0 \\ \frac{0}{0} \\ \hline \end{gathered}$				$\underset{\sim}{\sim}$				
				F				
					\％之旁氪			
				の				
				∞				
				\wedge				
			응	\bullet				
				๑				
				＊				
				∞				
\sim								® ¢¢뜰
－				$=$ 爫言号				的电喜，

	을
$\stackrel{8}{8} \stackrel{\text { E }}{\square}$	
	안
	® E S
\％¢ ¢ 旁宮	ある
	\％
	¢ ¢ ¢

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

